aldehydic carbon. Oxidation of 2 with $KMnO₄$ in a water-ethyl acetate mixture **also** furnished **5;** however, contamination with unreacted starting material was present. Oxidation of the nitronate salt of **2** with KMnO, furnished the corresponding carboxylic acid **6,** the NMR spectrum of which shows a peak at **6** 176.3 for the $CO₂H.$

Four-directional C-cores¹² with a variety of terminal functional groups may now be readily prepared, thus making **tris(8-cyanoethy1)nitromethane** a most attractive building block for cascade polymers.

Experimental Section

General Comments. All melting points were taken in capillary tubes and are uncorrected. The ¹H and ¹³C NMR spectra were obtained in CDC13, unless otherwise etated.

DMSO was dried and **stored** over **3A** molecular sieves. Pyridine was dried over solid KOH, then distilled and stored over KOH. Unless specified, solvents were purified by simple distillation. $Tris(\beta$ -cyanoethyl)nitromethane $(\overline{\text{A}})$ drich; 1, 1 g) was recrystallized from MeCN/EtOH (6 mL; 1:5): mp 114-116 °C.

34 Nitromet hy 1) **-3-** (2-cyanoet hy1)- 1,s-dicyanopentane **(2**). Freshly distilled CH3N02 **(10** g, **160** mmol) was carefully added to a stirred slurry of NaH **(3.92** g, **163** mmol; **95%)** in dry DMSO **(350** mL) under an inert atmosphere. After the foaming had subsided, a solution of tris(β -cyanoethyl)nitromethane (8.8 g, 40 mmol) in DMSO **(50** mL) was added and the mixture was irradiated **(1oO.W** incandescent lamp). The temperature was allowed to rise to **65** "C within a period of **35** min and maintained at **65** OC for an additional **25** min. The yellow solution was then cooled to 25 °C, treated with AcOH (18 mL), and then poured into water **(4** L). After the aqueous solution was extracted with EtOAc **(7 X 100 mL),** the combined organic fraction was washed with brine and dried (MgSO₄). The residue was chromatographed (SiO₂), eluting with EtOAc/CH2C12 **(3:7),** to give the homologue **2 as** colorless crystals: yield, $6 g (64\%)$; mp 100.5-102 °C (MeOH); ¹H NMR (DMSO- d_6) δ 1.18-1.77 (m, CH₂CH₂C=N, 6 H), **1.99-2.68** (m, CH2C=N, **6** H), **4.64 (e,** CH2N02, **2** H); I3C NMR 6 **10.8** (CH2C=N), **28.3** (CH2CH2C=N), **40.4** (quat **C), 78.2** (CH&JOJ, **120.4** (ChN); **Et** (KBr) **2225** (C=N), **1558,1383** (NOJ cm-'. Anal. Calcd for C11H14N402: C, **56.39;** H, **6.02;** N, **23.91.** Found C, **56.43;** H, **6.05;** N, **23.99.**

3,3-Bis(2-cyanoethyl)-4-nitro-l,6-dicyanohexane (3).To a solution of **2 (1.17** g, **5** mmol) and acrylonitrile **(2.0 g, 37** mmol) in dimethoxyethane (DME; **20** mL) was added Triton-B **(40%** in water, 640 mg), and then the mixture was stirred at 25 °C for **48** h. Additional catalyst **(650** mg) was added after **24** h. The catalyst was neutralized with dilute aqueous HC1, and the reaction mixture was concentrated in vacuo to **afford** a residue, which was stirred with EtOAc **(50** mL) and water **(10 mL).** After the layers were separated, the combined organic phase was evaporated to dryness to give an oil. This was column chromatographed (SiO₂), eluting with EtOAc/CH2C12 **(37)** to fumish **3, as** colorless crystals: yield, **580** mg **(40%);** mp **114-116** OC (MeOH); 'H NMR 6 **1.72-1.82** (m, CH2CH2C=N, **6** H), **2.45-2.50** (m, CH2C=N, **6** H), **4.72** (m, CHN02, **2** H); lac NMR *6* **11.5 (3 X** CH2C=N), **14.08** (quat C), **92.2** (HCN02), **119.16** (C--N), **120.3 (3 X** C=N); IR $(KBr) 2260$ (C=N), 1558 (NO₂) cm⁻¹. Anal. Calcd for C₁₄H₁₇N₅O₂: C, **58.52;** H, **5.96;** N, **24.38.** Found C, **58.59;** H, **6.02;** N, **24.32.** $(CH_2C=N)$, 23.8 $(CH_2CH_2C=N)$, 28.5 (3 \times $CH_2CH_2C=N)$, 41.4

3-(2-Cyanoethyl)-l,3,S-tricyanopentane (4). A solution of **2 (488** mg, **2** mmol), pyridine **(5** mL), and PC13 **(430** mg, **3** mmol) was maintained at 25 °C for 35 h, diluted with water (80 mL), and acidified with concentrated HCl(5 **mL).** The aqueous solution **was** extracted with EtOAc (3 **X** *50* mL), and the combined extract was dried (MgSO₄). Evaporation of the solvent afforded the tetranitrile **as** colorless crystals yield, **270 mg (69%);** mp **128-130** $^{\circ}$ C (MeOH); ¹H NMR β 1.16-1.73 (m, $CH_2CH_2C=N$, 6 H), **2.01-2.69 (m,** CH2C=N, **6** H); **'BC** NMR *6* **12.0** (CH2C=N), **29.4** $(CH_2CH_2C=N)$, $\bar{39.0}$ (quat C), 119.6 $(C=N)$, 120.3 (3 \times C=N);

3-Formyl-3-(2-cyanoethyl)-1,5-dicyanopentane (5). A **so**lution of **2 (468** *mg,* **2** mmol) in MeOH was added to LiOMe *(80* mg, **2.1** mmol) in MeOH **(15** mL) at **0** "C. After concentration in vacuo, the remaining salt was dissolved in saturated aqueous $K_2B_4O_7$ (25 mL). A solution of $KMnO_4$ (316 mg, 2 mmol) in saturated aqueous K₂B₄O₇ (25 mL) was added dropwise. After addition, the solution was stirred for an additional **30** min and then decolorized with aqueous $Na_2S_2O_4$ and dilute H_2SO_4 . The solution was extracted with EtOAc **(2 X 30** mL), and then the combined extract was washed with water **(5** mL), dried **(MgS04),** and concentrated in vacuo to give aldehyde **5 as** colorless crystah yield, **330** mg **(82%);** mp **108-110** OC (MeOH); 'H NMR *⁶* **1.18-1.76** (m, $CH_2CH_2C=N$, 6 H), **1.98-2.62** (m, $CH_2C=N$, 6 H), **9.71 (s, CHO, 1 H); ¹³C NMR** δ **11.13 (CH₂C=N), 25.9 (CH₂C-**H2C=N), **50.4** (quat C), **120.4** (C=N), **204.6** (CHO); IR (KBr) **2823,2726** (CH stretch), **2250** (C=N), **1720** (CHO) cm-'. Anal. Calcd for C₁₁H₁₃N₃O: C, 65.00; H, 6.45; N, 20.68. Found: C, 64.84; H, **6.52;** N, **20.61.**

2,2-Bis(2-cyanoethyl)-4-cyanobutanoic Acid **(6).** To a stirred solution of MeOLi **(60** mg, **1.65** mmol) in water **(20** mL) **was** added **2 (350** *mg,* **1.5** mol) followed by aqueous **KMn04 (340** mg, 2 mmol; 30 mL of H₂O). The MnO₂ was dissolved by adding $Na₂S₂O₄$ and dilute H₂SO₄. Repeated extraction with Et₂O (5 \times **30** mL) then concentration in vacuo of the combined organic extract gave acid **6 as** colorless crystals: yield, 250 *mg* **(65%);** mp **126-127 °C (MeOH/H₂O); ¹H NMR δ 1.18-1.77 (m, CH₂CH₂-**CEN, **6** H), **1.97-2.63** (m, CH2C=N, **6** H); 13C NMR *6* **13.00** (CH2C=N), **29.96** (CH2CH2C=N), **48.1** (quat **C), 121.7** (C=N), $176.\overline{3}$ (CO₂H); IR (KBr) 2260 (C=N), 1705 (CO₂H) cm⁻¹. Anal. Calcd for C₁₁H₁₃N₃O₂: C, 60.25; H, 5.98; N, 19.17. Found: C, **60.26;** H, **6.01;** N, **19.30.**

Acknowledgment. We gratefully acknowledge the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Science Foundation (Grants DMR-86-00929; 89-06792) for their support.

R&~te NO. **1, 1466-48-4; 2,133887-78-2; 3,133909-48-5; 4,** 133887-79-3; 5, 36394-40-8; 6, 133887-80-6; CH₂=CHCN, 107-13-1; nitromethane sodium salt, **25854-38-0.**

Chemistry of Cyclic Phosphorous Compounds. **4.** Syntheses of the Sex Pheromone from the Pedal Gland of Bontebok and **Some** 1,4-Diketones by **Use** of **1,l-Diphenylphospholanium** Perchlorate

Tetauya Fujimoto,* Yukihiko Hotei, Hisashi Takeuchi, Satoshi Tanaka, Kazuchika Ohta, and Iwao Yamamoto*

Department *of* Functional Polymer Science, Faculty *of* Textile Science and Technology, Shimhu University, Ueda, Nagano 386, Japan

Received February 1,1991

The Wittig reactions of the ylides generated from cyclic phosphonium salts afford the phosphine oxides' which have a newly formed carbon-carbon double bond. Further olefination of the phosphine oxides by the Horner-Wittig reaction resulta in the formation of a diene.2 These **tan**dem Wittig reactions with the same phosphorous **atom** from a cyclic phosphonium salt provide a versatile procedure for synthesis of unconjugated dienes. We have previously reported the synthesis of 1,6-dienes³ by the

⁽¹²⁾ For related examples, see: Newkome, G. R.; Lin, X. Macromol*eculee* **1991,24,l44S. Newkomr,** *0.* **R.; Baker, G. R.; Moorefield, C. N.; Saundm, M. J.** *Polymer* Reprints, in **prow,**

^{(1) (}a) Märkl, G. Z. Naturforsch. 1963, 18b, 84. (b) Märkl, G. Angew.
Chem. 1963, 75, 168. (c) Lednicer, D. J. Org. Chem. 1970, 35, 2307. (d)
Lednicer, D. J. Org. Chem. 1971, 36, 3473.

⁽²⁾ Muchowski, J. M.; Venuti, **M. C.** J. *Org. Chem.* **1981, 46,** *459.*

tandem Wittig reactions and application of the method to a synthesis of unconjugated enones: sex pheromones of the Douglas Fir Tussock moth' and Japanese female **peach** fruit moth. 5 In connection with our continuing interest in these methods, we applied the method to syntheses of (Z)-5-undecen-2-one **(41,** a sex pheromone from the pedal gland exudate of the bontebok *(Damaliscus dorcas dor*cas),⁶ and 1,4-dicarbonyl compounds⁷ that are important precursors of 2-cyclopentenone derivatives.

Results and Discussion

The pheromone of the bontebok is a long-chain enone with *2* geometry. The most important step in the synthesis of this compound is the construction of a carbon-carbon double bond with *Z* stereoselectivity. Muchowski et al.² showed that the Wittig reaction of a five-membered cyclic phosphonium salt with t-BuOK **as** base in THF gave only Z olefins.⁸ In the preceding paper,⁵ we also reported a stereoselective synthesis of (2)-13-eicosen-lO-one and (Z)-12-nonadecen-9-one via the Wittig reaction of the five-membered cyclic phosphonium salt under Muchowski's reaction conditions. Accordingly, we attempted to construct a *2* unsaturated bond in enone **4** by the Wittig reaction of phospholanium perchlorate $(1)^9$ with hexanal (Scheme I).

In the 13C NMR of **2** after Kugelrohr distillation, only two **peaks** for the vinylic carbons **(6** 131.6 and 128.0) were observed and assigned to *2* geometry by comparing the 13C *NMR* chemical shifts of the allylic carbon atoms with those of the analogous (Z) -4-octene and (E) -4-octene.² The peaks corresponding to the E isomer were not observed. By contrast, the Wittig reaction with n-butyllithium under the same reaction conditions provided a mixture of *2* and E isomers **(6:l).** The carbonyl group in enone **4** was introduced via the vinyl sulfide, which could be hydrolyzed to produce the carbonyl functionality. Thus far, a number

(8) (a) Burger, B. V.; le Roux, M.; Garbere, C. F.; Spies, H. S. C.; Bigalke, R. G.; Pachler, K. G. R.; Weasels, P. L.; Christ, V.; Maurer, K. H. Z. Naturforsch. 1976, 31c, 21. (b) Mori, K.; Ara, T.; Matsui, M. Agric.
Biol. Chem. 1977, 41, 2295. (c) Brown, H. C.; Racherla, U. S.; Basavaiah, D. Synthesis 1984, 303. (d) Trehan, I. R.; Kad, G. L.; Varma, N.; Singh, *Synthesis* **1986, 48.**

(7) (a) hini, G.; Ballini, R.; Sorrenti, P. *Tetrahedron* **1983,39,4127. (b) Brown, H. C.; Bamvaiah, D.; Racherla, U. 5.** *Synthesis* **1983,888. (c) Fujiaawa, T.; Umezu, K.; Kawashima, M.** *Chem. Lett.* **1984, 1796. (d) Strunz, G. M.; Gi are, P.; Ebacher, M.** *Synth. Commun.* **198S, 13,823.** (e) Anand, R. C.; Ranjan, H. *Ind. J. Chem.* 1985, 24B, 673. (f) Yamashita, M.; Matsumiya, K.; Tanabe, M.; Suemitsu, R. *Bull. Chem. Soc. Jpn.* 1985, 467. (g) Reddy, R. T.; Nayak, U. R. *Synth. Commun.* 1986, *16(6)*, 713 **Am.** *Chem.* **Soc. 1984,** *206,* **2149 and references cited therein.**

(8) Vedejs, E.; Marth, C. F. *J.* **Am. Chem.** *SOC.* **1988,110,3948.**

(9) (a) Mllrkl, G. *Angew. Chem., Into Ed. Engl.* **1968, 2, 820. (b) Purdum, W. R.; Berlin, K. D.** *J. Org. Chem.* **1975, 40, 2801.**

Scheme I1

Table I. Synthesis of 1,a-Diketones 7a-c via Vinyl Sulfides from Phosphine Oxide 5

		Table I. Synthesis of 1.4-Diketones 7a-c via Vinyl Sulfides from Phosphine Oxide 5		
5	1) LDA 2eq. 2) MeSSMe $3)$ R' R^2 CO	SMe R R ² SMe 6a-c	HoCl, 2eq. 50°C	R. 7а-с
	aldehyde or			

 $E/Z = 68/32$. $bE/Z = 75/25$. CHydrolyzed without separating *E,Z* **isomers of diene. Isolated yield.**

of methods for the synthesis¹⁰ of vinyl sulfides and their hydrolysis¹¹ have been reported. Warren et al. developed a synthesis of vinyl sulfides from compounds bearing the diphenylphosphinoyl group.^{10f} However, direct sulfenylation of the lithium derivative of the γ -diphenylphosphinoyl ketal in their 1,4-diketone synthesis proceeded in low yield because of the formation of the disulfenylated phosphine oxide.¹⁰ⁱ In the preceding paper, we also reported that the lithiated **alkenyldiphenylphosphine** oxide was sulfenylated in low yield. Therefore, a one-step **syn**thesis of vinyl sulfides from **2** in the presence of 2 equiv of base was attempted in order to prevent **loss** of the anion by proton exchange between the initial carbanion and the sulfenylated phosphine oxide. **As** a result, diene 3 was obtained in 78% yield. It was confirmed by the 'SC *NMR* spectrum that *2* geometry of the olefin in 3 was retained. Vinyl sulfide 3 was hydrolyzed by means of mercuric chloride in aqueous acetonitrile. The use of 2 equiv of mercuric chloride,^{10e} however, resulted in the isomerization of the olefin $(E:Z = 59:41)$ and low yield (32%) . However, hydrolysis with **1** equiv of mercuric chloride suppressed the isomerization to provide an *E_z* mixture (6:94) of enone **4** in 78% yield. The *E,Z* ratio was determined by capillary gas chromatography, and the structures were confirmed by ¹H and ¹³C NMR and mass spectral analyses.

The efficient one-step synthesis of vinyl sulfide 3 and its conversion into the corresponding enone **4** prompted us to synthesize 1.4-diketones that are important intermediates for synthesis of naturally occurring cyclopentenones such **as** jasmonoids, prostanoids, and methylenomycins. Construction of vinyl sulfides in both steps of the Wittig and the Horner-Wittig reactions from the cyclic phosphonium salt would afford a compound having

⁽³⁾ Yamamoto, I.; Fujimoto, **T.; Ohta, K.; Matauzaki, K.** *J.* **Chem.** *Soc., Perkin Tram.* **1 1987, 1637.**

⁽⁴⁾ Yamamoto, I.; Tanaka, S.; Fujimoto, T.; Ohta, K.; Matsuzaki, K.
Nippon Kagaku Kaishi 1987, 1227.
(5) Yamamoto, I.; Tanaka, S.; Fujimoto, T.; Ohta, K. J. Org. Chem.
1989, 54, 747.

⁽¹⁰⁾ (a) Wittig, G.; Schlmer, M. Chem. *Ber.* **1961, 94, 1373. (b) Bestman, H. J.; Ammn, B.** *Chem. Ber.* **1962, I, 1613. (c) Mukaiyama, T.; Fukuyama, S.; Kumamoto, T.** *Tetrahedron Lett.* **1968,34,3787. (d)** Ikura, K.; Oae, S. Tetrahedron Lett. 1968, 34, 3791. (e) Corey, E. J.;
Shulman, J. I. J. Org. Chem. 1970, 35, 777. (f) Grayson, J. I.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1977, 2263. (g) Mikołajczyk, M.;
Grzejszczak, S.; Chefczyńska, A.; Zatorski, A. J. Org. Chem. 1979, 44, 2967.
(h) McGuire, H. M.; Odom, H. C.; Pinder, A. R. J. Chem. Soc., Perkin (i) MCOURS, 11.879. (i) Cornish, C. A.; Warren, S. J. Chem. Soc., Ferkin,
Trans. 1 1974, 1879. (i) Cornish, C. A.; Warren, S. J. Chem. Soc., Perkin

Soc., Perkin **Tram. 1 1987,967. (11) (a) Mukaiyama, T.; Kamio, K.; Kobayashi, 5.; Takei, H. Bull.** Chem. Soc. Jpn. 1972, 45, 3723. (b) Kende, A. S.; Constantinides, D.; Lee, S. J.; Liebeskind, L. Tetrahedron Lett. 1975, 405. (c) Marino, J. P.; Landick, R. C. Tetrahedron Lett. 1975, 405. (c) Vlattas, I.; Lee, A. O.
Landi *Tetrahedron Lett.* **1974, 4461.** (e) Mura, A. J., Jr.; Majetich, G.; Grieco, P. A.; Cohen, T. *Tetrahedron Lett.* **1975, 4437.** ²

two vinyl sulfides, which would lead to 1,4-diketones through hydrolysis promoted by HgCl₂ (Scheme II).

The one-pot vinyl sulfenylation of **1** with dimethyl disulfide and formaldehyde gas in the presence of **2** equiv of **LDA** was attempted and afforded the corresponding phosphine oxide **5** in high yield **(82%).** Phosphine oxide **5** would be a versatile intermediate for synthesizing 1,4 diketones by the further one-pot vinyl sulfenylation. Some carbonyl compounds were employed in the method (Table I). Although condensation with cyclohexanone gave diene **6c** in low yield (16%), the other reactions proceeded satisfactorily. Hydrolysis of dienes **6a-c** with **2** equiv of mercuric chloride afforded diketones **7a-c** in **good** yields.

Experimental Section12

(Z)-l-(Diphenylphosphinoyl)-4-decene (2). Method A. **Potassium** tert-Butoxide **as** Base. A mixture of phosphonium salt **le (5.00** g, **14.7** mmol) and potassium tert-butoxide **(1.65** g, 14.7 mmol) in dry THF (30 mL) was stirred at rt under N_2 for **1** h. To the mixture was slowly added a solution of hexanal **(1.47** g, **14.7** mol) in *dry* THF **(15 mL),** and the resulting mixture was stirred overnight at rt. After being quenched with saturated aqueous $NH₄Cl$, the mixture was extracted with ether. The organic layer was washed with water, dried (Na_2SO_4) , and concentrated under reduced pressure. The reaidue was distilled with Kugelrohr (bp 220-222 °C (0.6 mmHg)) and further purified by column chromatography on silica gel using ethyl acetate to give **3.80** g **(76%)** of **2 as** white crystals (mp **45.5-47.0** OC): IR (neat) **1180** (P-0) cm-'; 'H NMR **(250** MHz, CDC13) **6 7.78-7.70** (m, **4** H, P(0)Ph-o), **7.54-7.41** (m, **6** H, P(0)Ph-m, *-p),* **5.465.22** (m, **2 H, CH-CH), 2.31-1.60** (m, 8 **H, CH₂), 1.33-1.26** (m, 6 **H**, CH₂), 0.86 (t, 3 **H**, CH₃, *J*_{HH} = 6.6 **H**z); ¹³C NMR (CDCl₃) δ 133.2 (C_s, J_{PC} = 97.9 Hz), 131.65, 131.60, 131.57 (=CH or Cp), 130.8 (C₀, J_{PC} = 9.2 Hz), 128.6 (C_m, J_{PC} = 11.6 Hz), 128.0 (=CH), 31.5, 29.3 Hz), 22.5 (C₉), 21.4 (C₂, J_{PC} = 3.7 Hz), 14.0 (C₁₀); MS (75 eV) m/z **340 (M⁺), 201 (Ph₂PO⁺). Anal. Calcd for C₂₂H₂₉OP: C, 77.62;** H, **8.59.** Found: C, **77.50;** H, **8.55. 0.86** (t, 3 H, \dot{CH}_3 , $J_{HH} = 6.6$ Hz); ¹²C NMR (CDCl₃) δ 133.2 (\ddot{C}_n , graph $J_{PC} = 97.9$ Hz), 128.6 (C_m, $J_{PC} = 11.6$ Hz), 128.0 (=CH), 31.5, 29.3
 $J_{PC} = 9.2$ Hz), 128.6 (C_m, $J_{PC} = 11.6$ Hz), 128.0

Method B. *n* -Butyllithium **as** Base. A solution of **1 (0.83** g, **2.49** mmol) in dry THF **(20** mL) was stirred with n-BuLi **(1.51** mL, **1.64** N in hexane, **2.49** mmol) for **1** h. The mixture was reacted with hexanal **(0.25** g, **2.49** mmol) for **2** h at rt to give a mixture of *E/Z* isomers **(1:6)** of 2 **(0.42** g, **51%):** '9c *NMR* (CDClJ or Cp), 128.0 (Z-CH), 32.5 (E-C_e), 27.2 (Z-C_e). The ratio of E/Z isomers was determined from peak intensities of allylic carbons in the inverse gated heteronuclear decoupling '9c *NMR* **spectrum. 6 128.4** and **132.1** (E-CH=CH), **131.69, 131.65, 131.58** (Z--CH

(Z)-2-(Methylthio)-1,5-undecadiene (3). A solution of *n*-BuLi **(9.0** mL, **1.64 N** in hexane, **14.7** mmol) was added dropwise to diisopropylamine **(1.48** g, **14.7** mmol) in dry THF (50 mL) at **-78 °C** under N₂. The mixture was stirred at 0 °C for 30 min. A solution of **2 (2.50** g, **7.35** "01) in *dry* THF **(10 mL)** was added dropwise to the mixture at -78 °C. After 30 min, a solution of dimethyl disulfide **(0.69** g, **7.35** mmol) in dry THF *(5* mL) was then added and the resulting mixture was stimd for *20* min. Dry formaldehyde gas was bubbled into the mixture until the solution became turbid. After being stirred for **6** h, the mixture was quenched with saturated aqueous NH₄Cl and extracted with ether. The organic layer was washed with water, dried (Na_2SO_4) , and concentrated under reduced pressure. The residue was chromatographed on silica gel using CC14 to give **1.14** g **(78%)** of 3 **as** colorless liquid: IR (neat) **1605** cm-' (C-C); 'H NMR **(250** MHz, CDC13) **6 5.45-5.33** (m, **2** H, CH-CH), **5.02** *(8,* **1** H, C-CH₂), 4.60 (s, 1 H, C=CH₂), 2.29-2.23 (m, 7 H, CH₂ and SCH₃), **2.07-1.99 (m, 2 H,** CH,), **1.37-1.25** (m, **6 H,** *CH2),* **0.89** (t, **3 H, (75** eV) *m/r* **198** (M+). CH_3 , $J_{HH} = 6.75$ Hz); ¹³C NMR (CDCl₃) δ 146.7 (\tilde{C}_2) , 130.9, 128.2 ((26, CS), **161.0 (Ci), 37.5, 31.6,29.4,27.3, 26.8.22.6, 14.6, 14.1;** MS

(E)- and (Z)-Q-Undecen-2-one **(4).Bd** A mixture of 3 **(1.00** g, *5.61* mmol), dry CH3CN **(30** mL), distilled water **(10** mL), and HgC12 **(1.37** g, **5.04** mmol) was stirred at 50 "C for **20** h. After

being oooled to **rt,** the suspension was neutralized with saturated aqueous NaHCO₃. The supernatant was filtered off through hyflo-supercel, and the filtrate was extracted with ether. The organic layer was washed with water, dried $(Na₂SO₄)$, and concentrated under reduced pressure. The residue was chromatographed on silica gel using CHCl₃ to give 0.66 g (78%) of 4 (E/Z) *NMR* **(250** *MHz,* CDC13) **6 5.42-5.29** (m, **2** H, CH-CH), **2.50-1.99** (m, **6** H, CH,), **2.14 (s, 3** H, CH,), **1.29** (m, **6** H, CH,), **0.89** (t, **3 29.3,29.1,27.1,26.7,22.6,21.7,14.0; MS (75** eV) *m/z* **168** (M+). The ratio of E and **Z** isomers was determined by capillary GC (a DE1 megabore column **30** m **X 0.53** mm). Capillary *GC* (initial temperature, 80 °C; rate, 1.0 °C/min; final temperature, 150 °C; He flow rate, **83.7** mL/min) of **4** indicated a **6:94** mixture of E and Z isomers $(E = 43.88 \text{ min}, Z = 43.47 \text{ min})$. In a similar manner, 3 (0.10 g, 0.50 mmol) was treated with 2 equiv of HgCl₂ **(0.28** g, **1.0** mmol) to give **27** mg of **4 as** a mixture of pale yellow syrup and solid. The ratio of E and **Z** isomers was shown to be **5941** by capillary GC. = **6/94) as** a pale yellow liquid: IR (neat) **1720** ((2-0) cm-'; / ^H H, CH₃); ¹³C NMR (CDCl₃) δ 208.5 (C=0), 128.1 and 131.6 *(E-CH-CH),* **127.6** and **131.3** (2-CH-CH), **43.6,32.5,31.5,29.9,**

5-(**Diphenylphosphinoy1)-2-(** methy1thio)- **1-pentene** (5). A solution of n-BuLi **(38.7** mL, **1.6** N in hexane, **61.9** mmol) was added dropwise to a diisopropylamine **(6.27** g, **61.9** mmol) in *dry* THF (130 mL) at -78 °C under N₂. After being warmed to 0 °C, the mixture was stirred for **30** min. To the mixture was added phosphonium salt **1 (10.0** g, **29.0** mmol). After **1** h, a solution of dimethyl disulfide **(2.92** g, **31.0** mmol) in dry THF **(110** mL) was added, and the resulting mixture was stirred for **30** min. Dry formaldehyde gas was then bubbled into the mixture at **rt.** The mixture was quenched with water and extracted with ether. The organic layer was washed with water, dried $(Na₂SO₄)$, and concentrated under reduced pressure. The residue was chromatographed on **silica** gel **using** CHzC1,-ethyl acetate (gradient elution, **1:0** to **C1) to** give **7.61** g **(82%)** of 5 **as** pale yellow crystals (mp **86.8-89.9** OC): IR (neat) **1180 (P=O)** cm-'; 'H NMR **(60** MHz, CC4) **6 7.85-7.22** (m, **10** H, P(O)Ph), **4.90** *(8,* **1** H, C=CH,), **4.50** $(8, 1 \text{ H}, \text{C=CH}_2)$, 2.17 $(8, 3 \text{ H}, \text{SCH}_3)$, $2.50-1.50$ $(\text{m}, 6 \text{ H}, \text{CH}_2)$; MS **(75** eV) *m/z* **316** (M+), **201** (Ph,PO+). **Anal.** Calcd for CleH210PS: C, **68.33;** H, **6.69.** Found: C, **68.04;** H, **6.92.**

(5E)- and **(5Z)-2,5-Bis(methylthio)-1,5-undecadiene** *(6a).* A solution of n-BuLi **(11.6 mL, 1.64 N** in hexane, **19.0** mmol) was added dropwise to a solution of diisopropylamine **(3.65** g, **19.0** mmol) in dry THF (20 mL) at -78 °C under N₂. After being warmed to 0 °C, the mixture was stirred for 30 min. A solution of **5 (3.00** g, **9.50** mmol) in dry THF **(45** mL) was added to the mixture at **-78** "C. After **30** min, to the mixture was added dropwise a solution of dimethyl disulfide **(0.89 g, 9.50** mmol) in *dry* THF *(5* **mL)** and the resulting mixture was stirred for *20* min. A solution of hexanal **(0.95 g, 9.5** mmol) in dry THF *(5* mL) was then added dropwise to the mixture. After **1** h, the mixture was warmed to rt and further stirred for **1** h. The solution was quenched with saturated aqueous NH₄Cl and extracted with ether. The organic layer was washed with water, dried $(Na₂SO₄)$, and concentrated under reduced pressure. The residue was chromatographed on silica gel using CC14 to give **2.02** g **(87%)** of **6a as** a colorless syrup. The product was a mixture of E and *2* isomers **(6832)** from the peak areas of vinylic protons in the 'H NMR **spectrum: IR** (neat) **1600** ((24) cm-'; 'H *NMR (250 MHz,* **7.3** Hz) **(total** 1 H), **5.05, 5.04** (each *8,* **1** H, C=CH2), **4.61** *(8,* **¹ H,** C=CH2), **2.49-2.41** (m, **4** H, CH,), **2.30-2.06** (m, **8** H, SCHs and CH,), **1.43-1.23** (m, **6** H, CH,), **0.91-0.86** (m, **3** H, *CHJ;* **22.5, 14.9, 14.8, 14.6, 14.1;** MS **(75** eV) *m/z* **244** (M+). CDCl₃) δ 5.57 (t, CH= C , J_{HH} = 7.0 Hz), 5.19 (t, CH= C , J_{HH} = NMR (CDC13) 6 **146.3, 134.4, 133.8, 131.5, 124.3, 104.5, 104.4** (E,Z-CH-CH), **36.7,35.9, 31.6,31.5,29.7,29.3, 29.1,28.6,22.6,**

(1E)- and **(lZ)-2,5-Bis(methylthio)-l-phenyl-l,S-hexadiene (6b).** In a **similar** manner, 5 **(1.00** g, **3.16** mmol) was treated with dimethyl disulfide **(0.30** g, **3.16** mmol) and benzaldehyde **(0.34** g, **3.16** mmol) to give **0.46** g **(58%)** of **6b** *(E/Z* = **75/25) as** a colorless syrup. The ratio of *E,Z* isomers was calculated from the peaks of vinylic protons in 'H NMR: IR (neat) **1600** (C-C) *cm-';* **'H** NMR (60 MHz, CC4) **6 7.1** *(8,* **5** H, Ph), **6.4, 6.0 (s** and *8,* **¹ s, 1** H, *CeCH,),* **2.82-1.77** (m, **10** H, CH2 and SCH,); MS **(76** eV) *m/z* **250** (M+). H, PhCH=C), 5.0, 4.9 (s and s, 1 H, C=CH₂), 4.5, 4.47 (s and

⁽¹²⁾ Analytical instruments employed in this study are the same as in **ref 5.**

l-Cyclohexylidene-l,4-bicr(methylthio)-4-pentene *(64.* In a **similar** manner, **5 (1.00** g, **3.16 "01)** was treated with dimethyl disulfide (0.30 g, **3.16** mol) and cyclohexanone **(0.31** g, **3.16 mol)** to give **0.12** g **(16%)** of *6c* **as** a pale yellow syrup: IR (neat) **1600** (C=C) cm-'; 'H NMR **(60** MHz, CClJ *6* **4.90 (8, 1** H, *C=CHz),* **4.43 (a, 1** H, C=CH2), **2.53-1.77** (m, **14** H), **1.77-1.23** (m, **6** HI; MS **(75** eV) *m/z* **242** (M+).

2,bUndecanedione **(7a)."** A **mixture** of **6a (1.86 g, 7.60** mol) in dry CH3CN **(45** mL), distilled water **(15** mL), and HgCl, **(4.13** g, 15.2 mmol) was stirred at 50 °C for 20 h. After being cooled to rt, the suspension was neutralized with saturated aqueous Na_2CO_3 . The supernatant was filtered off through hyflo-supercel and extracted with ether. The organic layer was washed with water, dried (Na₂SO₄), and concentrated under reduced pressure. The residue was purified by Kugelrohr distillation **(102** "C **(1** mmHg)) to yield **7a (1.11** g, **79%) as** crystals (mp **32.1-33.0** "C): IR (neat) **1720** (C4) cm-'; 'H NMR *(60* MHz, CC,) **S 2.54 (a, 4 H**), **2.37** (t, **2 H**, $J_{HH} = 6$ Hz), **2.10** (s, 3 H, CH₃), **1.87-0.63** (m, **11** H); MS **(75** eV) *m/z* **184** (M').

l-Phenyl-2,S-hexanedione (7b)."' In a similar manner, **6b (0.42** g, **1.68** mmol) was treated with HgC12 **(0.91** g, **3.36** mmol). The residue was purified by Kugelrohr distillation (125-130 °C (3.0 mmHg)) followed by chromatography on silica gel using CHCl₃ to give **0.22** g **(69%)** of **7b as** a pale yellow syrup: IR (neat) **1710** (C4) cm-'; 'H NMR **(60** MHz, CCl,) *6* **7.10 (a, 5** H, Ph), **3.57** eV) *m/z* **190** (M'). $({\bf s}, 2 \text{ H}, \text{PhCH}_2), 2.50 ({\bf s}, 4 \text{ H}, \text{CH}_2), 2.03 ({\bf s}, 3 \text{ H}, \text{COCH}_3); \text{MS} (75$

l-Cyclohexyl- l,4-pentanedione **(7c)."** In a similar manner, *6c* (0.09 g, **0.37** mmol) was treated with Hgcl, **(0.20** g, **0.74** mmol). The residue was purified by Kugelrohr distillation **(125-130** "C **(10** mmHg)) followed by chromatography on **silica** gel using CHCl, to give **0.057** g **(84%) of 7b as** a pale yellow syrup: IR (neat) **1710** (C-0) cm-'; 'H *NMR (60* **MHz,** CDCl,) **6 2.57 (s,4** H, CHJ, **2.07 (s,3** H, COCH,), **1.90-1.0** (m, **10** H, cyclic CH,); MS **(75** eV) *m/z* **182** (M').

Acknowledgment. We thank Professor R. Irie and Miss H. Karasawa of the Faculty of Agriculture, Shinshu University, for 250-MHz NMR spectral measurements. We are grateful to Ihara Chemical Co. Ltd. for the **gift** of triphenylphosphine.

1, **55759-75-6;** (2)-2, **133967-68-7; (E)-2, Registry No. 5,133983-56-9; (E)-6a, 133967-71-2; (2)-6a, 133967-72-3; (E)-6b, 133967-73-4; (2)-6b, 133967-74-5; 6c, 133967-75-6; 7a, 7018-92-0; 7b, 32776-14-0; 7c, 61771-79-7;** hexanal, **66-25-1;** benzaldehyde, **100-52-7;** cyclohexanone, **108-94-1;** dimethyl disulfide, **624-92-0. 133967-69-8; 3,133967-70-1; (E)-4,58761-29-8; (2)-4,21944-96-7;**

Supplementary Material Available: 'H NMR spectra for compounds **2-5,6a-c,** and **7a-c (14 pages).** Ordering information is given on any current masthead page.

Reexamination of the Conformational Preference of the Benzyl Group in Cyclohexane. Enthalpic and Entropic Contributions to $\Delta G^{\circ}(\text{CH}_2\text{Ph})^{\dagger}$

Eusebio Juaristi,* Victoria Labastida, and Sandra Antdnez

Departamento de Qulmica, Centro de Investigacidn y de Estudios Auanzados del Instituto Politecnico Nacional, Apdo. Postal 14-740, 07000 Mkcico, D.F. M8xico

Received April 5, 1991

Introduction

The energy differences between the equatorial and axial conformations of monoeubstitutsd cyclohexanes (A values) are of great interest to organic chemists since they serve **as** models for more complicated molecules.' Alkyl groups prefer equatorial over axial positions in order to avoid the

repulsive steric interactions with the axial hydrogens of the **3-** and 5-positions, and it is usually observed that bulkier the alkyl group the larger the preference for the equatorial form.2

In this regard, the accepted A values for methyl, ethyl, and isopropyl are **1.74, 1.8,** and **2.15,** respectively? in line with their increasing size. However, early force-field calculations indicated that the *enthalpic* contributions to the equatorial preference actually *decrease* along this **se** $ries.³$ By contrast, more recent force-field results suggest that the axial-equatorial enthalpy differences do not decrease, but vary slightly along the methyl, ethyl, and isopropyl series.⁴ Nevertheless, experimental NMR data agreed with the early theoretical results, affording, in $kcal/mol$, $-\Delta H^{\circ}$ (Me) = 1.75, $-\Delta H^{\circ}$ (Et) = 1.6, and ΔH° $(i-Pr) = 1.52.⁵$

The conformational study of benzylcyclohexane was deemed important in this context because the analysis of the gauche interactions present in the **axial** and equatorial conformers (Scheme I) suggests that the overall enthalpy difference must be *less* than the two gauche butane interactions present in axial methylcyclohexane. On the other hand, three populated rotamers in equatorial benzylcyclohexane versus two in the axial form⁶ imply that the entropy of mixing should make a substantial contribution to the free energy difference.

Results and Discussion

cis- and **trans-l-benzyl-4-methylcyclohexanes** *(cis-* and *trans-1)* were prepared and separated according to the procedure of Anderson.' The ambient-temperature **270-** MHz NMR spectrum of *cis-1* (solvent CD₂Cl₂) presents a doublet $(J = 7.9 \text{ Hz})$ at δ 2.57 due to the benzyl methylene hydrogens. At **202** K the signal appears **as** two doublets at **6 2.65** and **2.46,** in a **56.4:43.6** ratio. Because the methylene signal in conformationally fried *trans-1* **has ⁶2.47,** a reasonable conclusion is that the downfield signal corresponds to the axial benzyl. Therefore, at **low** temperature the conformational equilibrium of **cis-1** (eq **1)** appears to be displaced to the left, with $\Delta G^{\circ}_{202K} = +0.10$ kcal/mol.

$$
\text{CH}_3 \text{CH}_2\text{Ph} \longrightarrow \text{CH}_3 \text{CH}_2\text{Ph} \qquad (1)
$$

(1) Barton, D. H. R. Experientia 1950, 6, 316. Winstein, S.; Holness, N. J. J. Am. Chem. Soc. 1955, 77, 5562. Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A. Conformational Analysis; Interscience: New York, 1 *Conformational Analysk;* Wiley: **New** York, **m** prw. **(2)** Hirsch, J. **A.** Top. *Storemhem.* **1967,1,199.** March, J. *Aduanced*

Organic Chemistry, 3rd ed.; Wiley: New York, 1985.

(3) Allinger, N. L.; Hirsch, J. A.; Miller, M. A.; Tyminski, I. J.; Van-

Catledge, F. A. J. Am. Chem. Soc. 1988, 90, 1199.

(4) Squillacote, M. E. J. Chem. Soc., Chem. C **(6)** The phenyl-imide **rotamer** of **axial** phenylcyclohexane **ia** nearly **3**

(7) Anderson, J. E. J. *Chem. SOC., Perkin* **Trans.** *2* **1974, 10.** kcal/mol higher in energy and *can* be disregarded.

Dedicated to Professor Fernando Walls, Instituto de Qu'mica, **UNAM, on** the occasion of his 60th birthday.